Introduction

The point of this program is to generate attention-grabbing and amusing newspaper stories about events that illustrate VE’s predictions. For example, to illustrate a big rise in unemployment, VE could generate a story about the TUC questioning the Chancellor’s competence, or about somebody formerly in rock-solid employment who now can find only occasional and badly-paid part-time jobs:

ONCE IT WAS THE COAL-MINERS 

Now it’s the call-minders!
Not since James’s grandfather marched from Jarrow in 1936 have his family seen such protests against unemployment 

But this time it’s not the coal-miners; it’s the call-minders. 

With one in four of the working jobless once again, James is one of 200 men planning to repeat history by marching to London. 

Said James, 23: “The only jobs left in the North-East are in call centres. And since employment plunged so unexpectedly two years ago, even these are going. Bosses are dropping wages because people here are so desperate for work: there’s no future for us. The Chancellor is insane. He has to go”.

(Actually, that’s a bit of a cheat, since I believe Jarrow was mainly ship-builders. But  I was too pleased with the headline not to use it.)

Such stories would be great for the Election VE, just because they’re fun – and we hope they’ll give the media something nice to say about us. It’s a long time since we did anything new at the BBC. 

I also have in mind a general project to equip macro simulations like those on the Learning Arcade with story generators, to make them more memorable and interesting for students. This would give an opportunity for teaching the historical and social background to economics, for instance the social events surrounding the Depression, by hyperlinking from the stories to explanatory texts. This ties in with something Graham said recently, that economics should not be taught as merely a bunch of equations about supply and demand, but as a branch of the Arts which is closely related to history.

Types of story

VE contains a macro model which predicts unemployment, growth and other variables over the next ten years, and a micro model which calculates the effects on nine sample families during the next year. Consider only the macro model for the moment. The simplest kind of story to generate from its predictions is one which simply reports the post-reform value of a macro variable and indicates how this differs from the pre-reform value:

· Jobless total soars to 4.6 million.

· Employment remains stable with fewer than 1m out of work
By randomly inserting phrases, we could dress these up a bit:

· Calls for Chancellor to resign as jobless total hits 4.6 million.

· Jobless total below 1m for first time in 25 years.

· Fiscal prudence praised as economy “on level course”.

I’ll say more later about using grammars to do this. But note that this is not too difficult. To demonstrate this, below are five skeleton science-fiction plots which I have just generated verbatim from a Prolog program based on my greatly extended version of Gahan Wilson’s "The Science Fiction Horror Movie Pocket Computer" (in "The Year's Best Science Fiction No. 5", ed. Harry Harrison and Brian Aldiss, Sphere, London, 1972).

· Mars is taken over by a time-travelling loony who returns to his youth and kills himself (I said he was a loony).

· Mars falls toward the Sun and almost everyone dies. 

· Mars is used as the cue ball in a game of galactic bar-billiards and is visited by evil mutant brewers yeast cells who wish only to serve everyone. 

· Mars is struck by a comet and is visited by good aliens who wish only to serve everyone (fried).  

· Planet 9 of Alpha-Centauri falls toward the Sun and is visited by good aliens who are wiped out by atom-test radiation which then turns everyone else into supermen.
Of more interest than simply reporting a macro variable would be to infer plausible micro-level events such as the repeat Jarrow march. The next section gives some examples:

Possible unemployment-related micro events

· Business closures.

· Individual job losses.

· Individual firings (“how I had to save costs”).

· Condemnatory speeches byTUC, by bishops, in Parliament.

· Wage cuts.

· Re-training schemes (to counter loss of skills).

· Stiffening of benefit regulations (to counter loss of motivation to work).

· Increased admissions for stress and depression.

· Church condemns stress-related marriage breakups and loss of family values.

· Some newly-unemployeds praise the opportunities for artistic self-development that the extra leisure time gives them (more probable if benefits are high).

· Building workers seek work in Germany (more probable if benefits are low).

· Demonstrations, riots, sit-ins, …

· Films and pop songs – perhaps a new wave of punk.

Admittedly, there are a lot of event types here. Considering VE as a game, I believe users will find it more fun – and more impressive – if there’s a lot to explore. Some users will do many runs, and become bored if the same events keep repeating run after run. Some, if they see from the first few outputs that the output is very varied, may keep running the system just in the hope of discovering new stories, as happens with computer Fortune programs.

Several of these events could be linked back to Andy’s notes. For example, his Outcomes section explains that loss of skills and loss of motivation are two possible outcomes of unemployment.

We would, I suppose, need some events of the opposite sign to exemplify unemployment when on the decrease.

The frequency of some events could well depend on more than just unemployment, but for simplicity I’ll ignore other variables for the time being.

Timing

The user runs VE by changing taxes, benefits, and other variables from their current (“pre-reform”) values and then submitting these to our server. VE then runs its model and displays its predictions as graphs and tables showing changes in unemployment, growth and other variables over the next ten years:
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(The red line is VE’s prediction for the effect of the user’s changes; the blue line is its prediction for the course of our economy if no changes are made. The user makes one set of changes, to the tax system as it is now, mid-2001.)

So for which simulated year should we report a story? Doing so for each year in the ten would generate too much output, surely, though students might find it interesting to read the history of this simulated universe. We could modify VE so it outputs only the next year’s predictions, but that would be taking away too much. We could, as we hoped to do with VE2, make a multi-shot system using sessions, so that the user’s first run advances the economy to 2002, the next run advances it to 2003, and so on, but that’s quite a big change to the implementation.

Perhaps the thing to do is to pretend that the user, as Chancellor, has changed the economy over one year, from the point labelled Now to that labelled Next Year.
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Anything beyond that is prediction. So the stories report a change over one year. The remaining part – the dotted line on the graph – could be dramatised as the predictions of an economic advisor. A problem with reporting just one year’s changes could be that they’re just never going to be big enough to be interesting: the events resultant upon a change from 5 to 5.5% unemployment are hardly extreme.

Forbidden events

If our story-generator is constructing stories about micro events, then it is in its own small and terribly crude fashion, a micro-economic simulation. This matters because, as with any other micro-macro model pair, both models’ predictions must be consistent with one another. In the context of the previous section on Timing, this means that the stories must not describe events which would render impossible that part of VE’s macro-economic predictions in the storiy’s future. So – unless purely for fun - we should beware of extreme stories about revolutionaries installing a military dictatorship, for example. 

Story grammars

The easiest way to generate our stories is by using grammars. To introduce the idea, a familiar example from English: 

sentence --> 

  noun_phrase, verb_phrase, noun_phrase,  ['.'].

sentence --> 

  interrogative_pronoun, verb, noun_phrase, ['?'].

sentence --> 

  interrogative_pronoun, [‘do’], noun_phrase, verb, ['?'].

noun_phrase --> noun.

noun_phrase --> [‘the’], noun.

verb_phrase --> verb.

verb_phrase --> [‘do’], verb.

noun --> [‘Dr Thirsty’]. 

noun --> [‘Youngs Bitter’].

noun --> [‘Turf Tavern’].

noun --> [‘St Aldates’].

interrogative_pronoun --> [‘who’].

interrogative_pronoun --> [‘what’].

interrogative_pronoun --> [‘where’].

verb --> [‘sells’].

verb --> [‘brews’].

verb --> [‘owns’].

These are fragments from a grammar which I used in a Prolog program to answer questions about Oxford pubs, e.g. “Who sells Dr Thirsty?”. Though in many ways inadequate – no verb inflections, for example – you can see how it defines some familiar sentence structures in terms of English grammatical classes and words. Prolog has a built-in parser which, having read a grammar in this notation, can parse lists of words, and if these lists are grammatical, build a syntax tree from them.

 Prolog isn’t limited to parsing. The science-fiction plots were generated by a program which read such a grammar, and then ran over the data structure, using it to construct random plots. This was merely a matter of following the right-hand-side of a rule, inserting words verbatim where they occurred inside square brackets. Where the generator encountered the name of another rule, it chose one of the rule’s definitions at random, and then recursively worked its way along that rule’s right-hand-side.

We could use the same principle for our stories, then:

story --> factual_statement, 

          opt( historical_comparison ),

          opt( evaluation ),

          opt( corrective_policy ).  

where opt(…) surrounding the name of a rule means ‘Optional’. So we might see

Unemployment soared to 4.6 million // for the first time in 70 years  // The Chancellor is insane. // He must resign!

(A more serious corrective policy would advocate cutting taxes, or whatever suits the current situation.)

We could bias the probability with which rules are selected by adding weights to the rules, using these to weight the random-number generator.

Choosing verbs

How can we control the verbs used to compare the pre- and post-reform values, selecting “soar” for a large change rather than “rise”, or “plummet” rather than “fall”? 

Linguists talk about the features that make up words and phrases. Well-known features of verbs include person (I/we, you, he/they) and number (singular or plural). Looking more deeply into meaning, there are differences to do with the subject (animals kill but don’t murder, so “murder” has a feature saying its subject must be animate), and the object (one can steal a thing but not a person, so “steal” needs a feature saying its object must be inanimate). We can use this idea here. In the context of comparing old and new values of VE’s macro variables, important features are the size and direction of the change denoted by the verb.

We also need to consider the emotional connotations of the verb: its affective content. “Plummet” has negative associations, so “unemployment plummets” would sound odd, while “employment plummets” sounds OK. There are several verbs with negative associations implying a large downward change, such as “crash”, but I can’t think of one that has positive associations only. “Slashed”, perhaps? Here’s a table with my subjective judgements of a few of these:

Verb
Size
Direction
Affect

Rise
N
Up
N

Fall
N
Down
N

Be boosted
Large
Up
+

Plummet
Large
Down
-

Ease
Small
Down
+

Having written such a dictionary, generating the correct verb is easy. We only need to write a function that maps VE’s predicted unemployment change to a feature-list, e.g.:

Change from 1.5m to 1m -> [ small, down, + ] 

Change from 1.5m to 5m -> [ large, up, - ]

and we then we can choose an appopriate verb by matching this list against the dictionary, something Prolog does very easily.  

Note that we need to convert VE’s unemployment prediction from how VE expresses it (a fraction of working population) to a number of people. We also have to decide on the resolution. Is a value of 12.345 million to be reported as 12 or 12.3 or 12.34 …?

Making the stories depend on macro variables

When writing the grammar, we have to tell the generator that some parts of it depend on VE’s output.. Call the change in unemployment U, and suppose that the factual_statement part of the grammar generates the comparison between old and new, then we would need to indicate its dependence on U:

story(U) --> factual_statement(U), 

             opt( historical_comparison ),

             opt( evaluation ),

             opt( corrective_policy ).

That’s of interest only to the programmer, but it does bring out the fact that we can make other parts of the story depend on the output. This provides an easy way to add the calls for resignation:

story(U) --> headline(U), 

             opt( historical_comparison ),

             opt( evaluation ),

             opt( corrective_policy ).

headline(U) --> factual_statement(U).

headline(U) --> [ ‘Calls for Chancellor to resign as ‘ ],

                factual_statement(U)

                if U has_features [ large, up, - ].

headline(U) --> [ ‘Blair praises fiscal probity as ‘ ],

                factual_statement(U)

                if U has_features [ _, same, + ] 

                or U has_features [ _, down, + ]. 

In practice, we would want to factor the grammar so that words are chosen as far down the tree as possible, to avoid repeating common components like factual_statement. Here’s an example:
story(U) --> headline(U), 

             opt( historical_comparison ),

             opt( evaluation ),

             opt( corrective_policy ).

headline(U) --> ... lots of other rules ...

headline(U) --> resignation(U).

resignation(U) --> demands(U),

                   [ ‘that Chancellor ‘ ],
                   go(U).
demands(U) --> [ ‘calls’ ].

demands(U) --> [ ‘demands’ ]. 

demands(U) --> [ ‘strident calls’ ]

               if U has_features [ very_large, up, - ]. demands(U) --> [ ‘invitations’ ]

               if U has_features [ small, up, - ].

go(U) --> [ ‘resign‘ ].

go(U) --> [ ‘be executed’ ]

          if U has_features [ very_large, up, - ]. 

This could be factored further to avoid repetition of “calls” after “strident”, by having a separate rule that adds adjectives.

Historical comparisons

Sentences like “Jobless total below 1m for first time in 25 years” add realism by comparing the current situation with history. There is more to this then merely matching against a sequence of historical values.

Trivially, we must decide whether to compare absolute population figures or fractions of the working population. The former is legitimate only over the period when the number of potential workers was the same as now, though perhaps this doesn’t worry the more functionally illiterate tabloids.

We must also decide which historical points are worth mentioning. “Falls below 1m”  sounds more significant than “falls below 1.572 million”, even though it isn’t. We could rate comparisons by “headline power”, evaluating this by availability of a nice round number or juicy event like the Depression, and rejecting all candidate events if they’re all insufficiently attention-grabbing.

Time periods could be reported as a time since key events, and given homely names rather than numbers: “three generations since the Depression”.

Inferring micro events

So far, the stories have been almost entirely about macro-level events, i.e. the change in unemployment. I say almost entirely because the rule

headline(U) --> [ ‘Calls for Chancellor to resign as ‘ ],                              

                factual_statement(U)

                if U has_features [ large, up, - ].

in fact does generate a sentence telling of a micro-level event, namely that of someone requesting the Chancellor’s resignation. It’s just that I was using this phrase as a casual embellishment in the same spirit as adding an exclamation mark to the end of a sentence or a “Shock Horror Probe!” to the beginning. 

So admitting that grammars can prescribe such events, we can extend this approach. Here’s a rule that says that one possible headline is one that describes a business being closed:

headline(U) --> [ ‘Slump starts to bite as ‘ ], 

                business, 

                [ ‘ closes with loss of ‘ ], 

                jobcount, 

                [ ‘ jobs.’ ] 

                if U has_features [ large, up, - ].

business --> [ ‘Camell-Laird’ ]. 

business --> [ ‘Corus’ ].  

business --> [ ‘Marconi’ ]. 

business --> [ ‘Motorola’ ]. 

// There seems to be no shortage of examples 

// right now...

jobcount --> [ 1000 ]. 

jobcount --> [ 1500 ]. 

jobcount --> [ 2000 ].

With all of this, the goal is to generate the illusion of reality with the least programming effort and computer resources.

Inferring micro events (2)

Using this grammar-based approach, we can easily generate a great variety of stories. If we write a story-generator for the Election, this may be the best way to go.

However, it will be difficult to control the probability with which different kinds of story appear. Also, factual knowledge about the simulated universe of micro-events is mixed up with linguistic knowledge about English grammar and about the global structure of stories. Moreover, in a multi-shot VE, where the user can step the same economy ahead one year at a time, it would be hard to maintain a consistent cast of characters with coherence amongst the events happening to them. For example, it’s possible, albeit unlikely, that the business closure rule gets chosen each year. It’s even possible, though even more unlikely, that the same business is mentioned each time, leading to a stream of stories about Marks and Spencer (say) closing in 2001, and then in 2002, and so on. (On second thoughts, perhaps that’s not so unrealistic after all…)

To avoid these problems, we should separate the task of generating micro-level events from that of reporting them in English. In an ideal world with infinite computer time and space, we would first define a large cast of actors: people, businesses, politicians; and the ways in which they can interact. We would write a simulator which generates a huge set of plausible events from this universe, biasing their probabilities according to VE’s macro predictions. Then a reporter agent examines these events, selecting the most newsworthy. Finally, a natural-language generator converts this selection from the internal representation used by the simulator into English.

Should the cast of people be small as in a soap opera, so that interest is kept by getting new stories about recognised characters, or large to add variety?

Because of the huge number of events that would be generated and not used, this technique would be infeasible. The diagram below depicts an alternative method

[image: image3.png]Macro variables

Unemployment

Growth: Derived macro variables

\nﬂzﬂ. Social uniest index -
Social confidencs index

Business confidencaindex

Eventtype probabilities

Business closures
Job \ussez
Riots

Pop songs -

Events
Ancther Toyota closure

John loses job after 44 years




We start by deriving some new macro variables. These could include such things as the CBI’s Business Confidence Index, a Social Confidence Index which indicates how satisfied the average consumer is with the economy, and a Social Unrest Index. This would specify how “hyperreactive” people are, and hence their likelihood of responding to rumours, forming mobs, and so on – as in the social turmoil before the Russian Revolution, or during German hyperinflation.

We also maintain a list of event-types, and calculate for each a probability dependent upon both the macro variables output by VE, and some derived from them. In the diagram, the size of the circles represents “activation strength”: the size of the macro variables, and the probability of the event types. 

Finally, from the event-type probabilities, we decide which events to generate. This method would be fairly easy to integrate with the grammar-based approach.
Generating policy advice

[How easily can we do this, given the macro variables?]

Typography and layout

We could display the stories using default browser layout, but it would be nice to make them more realistic. We need a newspaper heading, which will need to be an image – something reminiscent of the Sun’s heading, since that’s the reporting style I’m working towards.

We also need font and other style commands to control the headlines and body text. I suggest that the story generator insert XML tags - <headline1> … </headline1>, say – and that a separate pass over the output converts it to HTML. 

It would be fun to insert appropriate images amongst the text: both cartoons, and photo-realistic pictures of demonstrations, politicians, and so on. There’s not much time to work on this before the Election, but it’s worth considering for a longer project. Andy said the Learning Arcade is building a database of images: perhaps we could use these. More ambitiously, I would like to try generating cartoons from pre-drawn parts.

Multiple ideologies
“And all the papers have reports from three or four agencies?”

“Yes.”

“But if we all send the same thing it seems a waste.”

“There would be a row if we did.”

“But isn’t it very confusing if we all send different news?”

“It gives them a choice. They all have different policies so of course they have to have different news.”

From Scoop by Evelyn Waugh

Or: “Unemployment is a price worth paying” if you’re Chancellor but not if you’re TUC. How can we generate stories with different ideological biases from the data……?

Be Your Own Creator

For a general version of the story-generator, the actors and the ways in which they can interact will be different for each application. We shall need to devise a language in which the user can specify these things, and how the event probabliities are to be controlled by the macro model.

Natural-language generators

There are programs that, given a Prolog-style logical description of an event, can generate an English description of it. Several such NLGs are available free for non-commercial use – such as ASTROGEN, Gazelle, and ThoughtTreasure – but would require great care to avoid their output sounding stilted. Gazelle is worth investigating, because it can choose words by using statistical knowledge gained from large samples of English text about the frequency with which one word follows another. So if primed with 10 years of Sun features, and then needing a word to express the meaning “fall”, Gazelle might come up with “sinks” to follow the noun “Sterling”, but “plunges” to follow “Pound”.
Programming language

Lisp and Prolog are the languages traditionally used for this kind of work. Both, Prolog especially, make it easy to write grammars using familiar left-hand-side‑>right-hand-side notation, and then to write code that loops through the resulting structures.

There is a dialect of Lisp called Scheme, and a Java implementation of Scheme named Kawa, which I’m already using this for the MM work on Andy’s spreadsheet models. The advantage of Kawa is that the compiler generates Java VM code, so it can be linked with our servlets.

I don’t know any good Java Prolog implementations, though there may have been improvements since I last looked. However, there is a freeware implementation called SWI Prolog which has binaries for Windows and many versions of Unix, and whose source is also available. We should be able to call this as a subprocess from our servlets, though the usual problems might arise on the BBC machines.

If piping data into either language, the servlet will have to convert it into a format that the implementation can read. This will be mainly a matter of inserting brackets and commas between data items, and putting strings inside quotes. 
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