Tow: A System for Teaching Economics via the Web
Jocelyn Ireson-Paine,

Oxford University Department of Experimental Psychology, South Parks Road,

Oxford OX1 3UD

http://users.ox.ac.uk/~popx/

and

Graham Stark,

Institute for Fiscal Studies,

7 Ridgmount Street,

London WC1E 7AE

http://www.ifs.org.uk/index.htm

Abstract:

"Tow" - "Taxes and Benefits on the Web" - is a prototype for teaching labour-supply economics to students by allowing them to play at Chancellor. By filling in HTML forms, they can create their own "budget", setting Income Tax rates, VAT, and other properties of the tax and benefit system. They submit this to an economic model which predicts the budget's effect on Government revenues, and on a sample family characterised by its income and expenditure, also generating budget constraint plots and tables. Students can define their own families and tax systems, and save them in a database on our server for later use.

Although future versions of Tow will use Java applets in their interface, the current version relies on server-side processing. It is large, containing about ten interactive pages and many dynamically- generated menus, re-plottable graphs and other components. This complexity would make it difficult to write using normal CGI techniques such as Perl scripts. We developed our own authoring system, Web-O-Matic, based on Ireson-Paine’s System Limit Programming, which allows the author to write interactive pages as HTML with embedded code to control their interaction. It also handles session-management and other low-level details, freeing the author from such tasks, and allowing interactive pages to be authored very easily.

Tow follows on from our first two online models, "Be Your Own Chancellor" and "Budget95".

1.Introduction

The Institute for Fiscal Studies was set up in 1969 to promote public understanding of fiscal policy. Much IFS research uses "what if" economic modelling programs, analysing for example the effect of a minimum wage on low-income earners. These programs include Corp II, a new model of the corporate tax system; LocalGov, which models the interactions of local government finance and the personal sector; and TaxBen II [Giles and McCrae 1995], for modelling distributional effects of the UK personal tax and benefit system. We shall describe how we connected TaxBen to the Web, as a prototype for teaching economics to sixth-form and undergraduate students.

1.1 The IFS On-Line Models Project

Tow combines features of our first two Web-based models, Be Your Own Chancellor and Budget95, so we shall describe them first.

Both arose from the need to give TaxBen a new user interface. Although updated regularly, TaxBen was written long before Windows, and has an old DOS menu interface. In mid-1995, we thought about using the Web to replace this by a windowing interface. Users would submit data to it, by filling in HTML forms, and it would send back results as dynamically-generated Web pages: in other words, we would use the Web as an "intranet". We did some tests which showed this to be feasible.

We then realised there was no need to stay within the IFS. We already had our own Web site, set up to hold electronic copies of all our research publications, thus helping our goal of greater public understanding. Making our Web-based models public was an obvious next step. That was the start of the On-Line Models Project.

2. Be Your Own Chancellor and Budget95

We had done our first experiments in September 1995. With the Budget looming, we decided to build "Budget95", a Web-based Budget analyser. Users would submit details of their income and expenditure. The model, primed with pre- and post-Budget tax systems, would return a breakdown showing how the Budget affected the user's Income Tax and NI (based on income, classified into earnings, pension, etc) and their VAT and other indirect taxes (based on expenditure on food, alcohol, and other consumables), The post-Budget parameters would be programmed in just after the Chancellor's speech, and the model would go live at 6pm the same evening. In the event, we went live early, and our server performed impeccably, handling a maximum of 450 model runs per hour without crashing or slowing down appreciably [IFS: Story so far]. Budget95 has been updated twice since, and is now Budget97.

We tested our techniques by implementing and releasing another model a few weeks earlier, so giving us some breathing space to detect and fix bugs. This was our first on-line model, "Be Your Own Chancellor" (BYOC). Here, the user plays at Chancellor, using a form to change Income Tax rates and thresholds, VAT rates, vehicle excise duty and other parameters. BYOC calculates this "Budget"’s effect on nine sample families and on Government revenue, and sends back a page with the results.

BYOC was reviewed in [Emslie 1995], and both models can be accessed from our home page [IFS: Home Page]. We show examples of BYOC's input and output below; the family on the output page have had their beer and tobacco duties raised slightly:

[image: image1.png]
2.1 How the models are connected to the Web

Whenever you submit data from an HTML form, the browser sends it to the server, together with a string identifying the form. From this string, the server can tell it must run a program rather than sending back a static page. In our case, our server checks the data, and writes it to a temporary file. It then starts TaxBen, passing it this file as input, together with a string saying which model the data comes from. TaxBen does its calculations, writing the results as HTML to another temporary file which the server then sends back to the browser.

Those wanting to try for themselves can find details in [Ireson-Paine 1997b]. It is worth noting that using files for input and output means existing code can be connected without modification: we had to change very little of TaxBen.

2.1.1 Error-handling

We had to think about user errors such as illegal characters in numbers. Without Java or JavaScript, not widely used when we started, the browser cannot check these. Instead, the server must, perhaps then sending back the same form with a message indicating the error. This, however, involves programming dynamic pages (section [4.2]), and was more complicated (and slower) than what we wanted to do. We side-stepped the problem by having all numeric data entered via menus.

Writing menus in HTML is verbose - the menu with three choices 1 2 and 3 must be written as <SELECT><OPTION>1<OPTION>2<OPTION>3</SELECT>. We therefore built a preprocessor that allowed us to write menus in an abbreviated notation and that translated this into standard HTML. It also let us specify translations from strings to numbers, so that, for example, the user could select the option "Abolish it!" but the server would translate this to 0 before passing it to TaxBen.

2.1.2 Documentation and tutorial text

The Web's hypertext nature means we can link documentation to input and output pages. This includes HELP files (e.g. to explain unfamiliar terms such as "SERPS"), as well as discussions of more general points. In BYOC, one of these concerns problems in generalising from its sample families (see next section). Another is linked from the output page, and reminds the user that BYOC and Budget95 are non-behavioural, i.e. do not model changes in consumption or earnings behaviour. This is an important point about these models, and also demonstrates more generally that models always have limitations.

2.2 The sample families
These are not BYOC's most satisfactory feature. Generalising from small samples is risky, because the tax and benefit system is extremely complicated and British society is very diverse. For example, one might be tempted to think of the "average" family as consisting of a working husband on an "average" income, a non-working spouse, and two children. But in fact only 6% of UK families are single-earner couples with children.

Similarly, although we may talk about the effect of a change on someone with an average income, such a person is, by the standards of the whole population, quite rich. The British income distribution is highly skewed, with a few rich cases at the top and most families clustered around a fairly low value. So it would be unwise to extrapolate to the whole population from an "average" income family in BYOC's sample.

The IFS is well aware of these difficulties [IFS: How to lie]. In our own modelling, we normally use a sample of about 7000 households from the Government's annual Family Expenditure Survey. This contains exhaustive week-by-week breakdowns of each household's income, expenditure, and characteristics. It would be perfectly feasible, technically speaking, to connect a version of TaxBen that uses the full dataset to the Web, and to add a graphical back-end to plot distributional analyses of changes. An example of what can be done is shown below, in one of several analyses generated by TaxBen in our work on the 1996 Budget, now published on the Web [IFS: The Impact of the 1996 Budget].

Unfortunately, the FES conditions of use prohibit not only redistribution of the data itself, but also of results generated from it. Since, in programs like BYOC, such results would help many people understand the effect of Government policies (surely a goal to be encouraged), these restrictions are regrettable.

3. Budget Constraints
Tow grew out of our addition of budget constraint plots and tables to BYOC, so we mention these next. A budget constraint shows how a household's net income after taxes and benefits - the amount it actually has to spend - changes with its gross income. The point is that, were there no taxes or benefits, a plot of net against gross income would just be a straight line. However, because the State withdraws benefits as income increases, and because of tax thresholds, the curve actually contains a “kink points” where its slope (the marginal tax rate) changes.

Having implemented Budget95 and BYOC, we wanted to experiment with on-line plotting. Adding budget constraints to BYOC gave us the opportunity, and in early 1996, we modified it so the user could get a budget constraint plot for any of the sample families. An example is shown below, for the same unemployed family depicted earlier:

We accompany this plot by an explanatory table which shows the marginal tax rate and reason for each kink:

TaxBen already had code for generating the kink points, based on an elegant recursive algorithm [Duncan and Stark 1994]. To convert kink points to graphs, TaxBen writes them to a temporary file which our server feeds to Gnuplot, a free plotting program [Gnuplot: Home Page]. This generates the plot as a GIF file.

4. Tow

We added budget constraints to BYOC as an experiment to see how far we could push Web technology. We then found more extensions to be desirable. For example, it would help if users could zoom in on complicated kinks in budget constraint plots. Also, although we were not permitted to use FES families, we could at least let users define their own. To avoid them having to continually retype the same definitions, we would allow them to save these in a database on our server. This in turn meant that, to control our filespace, we had to allocate usernames to users, and have a way for them to register.

We also wanted to use a more complete version of the tax system than did BYOC. The tax and benefit system is extremely complicated. Although BYOC's one-page data form describes it in enough detail to give realistic results, it is vastly oversimplified: a complete version would be ten times as large, too big to use without constant scrolling. We therefore added some of the extra parameters and split it into four forms: Income Tax, NI, indirect taxes, and benefits.

The result was Tow, a combination of Budget95 and BYOC with all the above features, all administered through HTML forms. Unlike these two models, we designed it specifically for those with at least a basic knowledge of economics - sixth-form students and undergraduates - as many of the additions would not interest the general public. Because of our budget constraint work, we based it around labour-supply economics, intending to extend to other topics later.

We show some examples of Tow's input forms below. The first allows the user to register; the second is for family data; the third for manipulating stored datasets. Note that we use HTML “frames” for navigation around pages (on the left) and for initiating actions (along the bottom).

Tow can be tried at [IFS:Tow]. Please note that it is a prototype: the economic model is not guaranteed correct, and the server is sometimes down.

4.1 Economics, optimisation, and indifference curves

Economics can be viewed as the study of how people optimise their choices, given finite resources, imperfect information, and limited time to gather information and make predictions. This notion of optimisation applies right across the subject, and is a wonderful way to unify seemingly unrelated areas, so we decided to use it in Tow’s teaching. In the context of labour-supply economics and budget constraints, this meant teaching about budget-constraint optimisation. We did so in two ways.

Firstly, we added the facility for users to type in an elasticity of substitution and get back a plot of the appropriate preference curve. This did not use TaxBen, but just called Gnuplot to plot an appropriate curve (the scales below are arbitrary):

Secondly, we allowed the user to enter an elasticity when requesting a budget constraint plot. TaxBen then computes the optimum preference curve with this elasticity for the budget constraint, and plots it on the same plot:

 We have also considered adding an “explanation” feature: click on a point and get back a textual explanation of the nearest kinks.

4.2 How Tow was connected to the Web

Connecting BYOC and Budget95 to the Web is essentially simple. The server receives the user's data, runs it through a program, and sends back the output. If the user wants to rerun the program, they must return to the input form and start again. We can say that BYOC and Budget95 are "one-shot" applications.

In contrast, Tow is "session-based". The user engages in a series of transactions, submitting a form, editing and resubmitting it, and so on. Unfortunately, this causes technical difficulties, because the Web protocol - HTTP - is "stateless". To see what this means, contrast with a user logging in to a normal multi-user computer system and using one of our models that way. This user is constantly connected to the same logged-in session. Every command they issue - to edit a file, to run the model, or whatever - goes to a system that knows who they are and that can distinguish them from any other users on the system at the same time. It also knows the current state of their filestore and of temporary files and other data created during the session.

This is not true of the Web. Suppose that user John submits a data form to Tow with an invalid number in one of the fields. Tow will detect this and send back a copy of the same form, with an error indicator. There may be many other people using Tow at the same time. If John then corrects the error and resubmits his form, HTTP does not provide any automatic way to tell the server that the form came from him rather than anyone else.

Web programmers know workarounds for this, which usually entail making the server send some kind of "session identifier" to the browser with every page. When the user engages in the next transaction, the browser sends this identifier back to the server, which uses it as a key to find the correct session. The problem is that to write such programs, you need expert knowledge of the Web's internal workings: not something we expect our economists to learn.

The other problem is that Tow's pages are dynamic - they depend on user errors, output from the model, and so on. HTML is a language for describing static pages, but cannot describe how they react to user input or changes in other pages. The only way to write dynamic pages is to write a program to output them. Again, this means knowing more programming than we wish our economists to, and also forces the author to concentrate on programming at the expense of the page's content.

4.2.1 Web authoring tools and Web-O-Matic
To solve this, we considered writing a preprocessor or compiler - "authoring tool", in Web jargon - for our economists to specify input forms and other dynamic pages simply. It had to provide a concise notation for menus, as in the preprocessor mentioned in section [2.1.1]. It also had to handle the coding necessary for session-based applications.

We tried saving development time with various quick- and-dirty tricks, but found they were only partial solutions, and would take more time than if we did the job properly. We therefore developed our own authoring tool, Web-O-Matic, based on the System Limit Programming paradigm [Ireson-Paine 1996, Ireson-Paine 1997a], and wrote all Tow's Web pages in it. Web-O-Matic allows the author to specify dynamic pages using an extended version of HTML, with embedded code to describe how they react to user input.

The original Web-O-Matic was not portable, relying on the Object Rexx programming language used on our OS/2 operating system. Jocelyn Ireson-Paine has since written a portable Java version: this is free for academic use and can be downloaded from [Ireson-Paine: Home Page].

The example below defines a form containing a menu, and then displays the option selected by the user, after translating it if it is the string "one" or "two".

<Form>

 Please select a value:

 <Menu input

 Options={/ 0, "one":1, "two":2, 10 to 100 by 20, 200 /}

 >.

 After translation, your selection is <Text output>.

 <Behaviour>

 output.setValue(input.getValue());

 </Behaviour>

 <INPUT TYPE=SUBMIT>

</Form>

4.3 Java applets for entering data graphically
As mentioned in section [4.1], Tow's user can enter an elasticity of substitution when requesting a budget constraint. Using HTML forms, the only way to do this is by giving the elasticity value, a number that’s of limited use unless one already knows a fair amount about elasticities and preference curves.

An alternative would be to enter the curve graphically, letting the user reshape it until it looks right. We haven’t yet done this for preference curves, but showed that it could be done by building a Java applet to do so for parabolas. This works as follows, using a method suggested by Fran(ois Charton. The applet draws a parabola, y=x^2

 y=x y=Ax2, for an initial value of the independent parameter A, say 1. The user can click any point on this curve and drag it to a new position. When the applet detects this, it gets the new coordinates, and calculates what A would have to be for the curve to pass through them. It then redraws it with this new value of A. (This can be done fast enough to look as though the curve is changing smoothly.) So the applet always knows A, and can send it to the server when requested.

5. Progress so far and future work

Both the On-Line Models Project and Tow have been suspended because of lack of funding. (When developing Web-O-Matic, we experimented with connecting a Local Government model to the Web, but have not taken this further.) Although we had to stop work on Tow before completing its documentation or fully validating the model, we developed it to the point where it could do everything we wanted, demonstrating that it is feasible to connect large session-based economic models to the Web.

In future, we would use Java more, as suggested in section [4.3]. One obvious use is to plot charts on the browser instead on the server, letting the user switch quickly between different analyses. If only we were permitted to use the whole FES dataset, this would be a wonderful tool for demonstrating the distributional effects of tax changes, allowing users to plot graphs like those in section [2.2] across whatever cross-section of the population they wanted.

Another possibility is tabular displays that allow the user to click on a cell and re-display its contents in disaggregated form.

Educationally speaking, our goal of using Tow in schools may have been misguided. Discussion with those concerned with economics teaching showed that optimisation (section [4.1]) is not taught at all. One might think it still desirable to introduce the notion via a tool like Tow, because it gives a new and valuable view of economics. However, the National Curriculum forces teachers to stick tightly to certain prescribed areas: our work falls outside these, and they would not be permitted to teach it. We are now investigating other teaching projects.

Finally, we mention that Tow's predecessors, BYOC and Budget95, received some very positive comments from teachers, students, journalists, and the general public. There is no doubt that such models play a valuable r(le in increasing public understanding. Tow was never advertised, so we do not know how it would have been received.

6.References

[Duncan and Stark 1994]

A. Duncan and G. Stark,

"MicroSimulation and labour supply: technical note", Swedish Ministry of Finance Conference Proceedings, Billdal, Sweden,

1994.

[Emslie 1995]

M. Emslie,

"Be Your Own Chancellor",

Computers in Higher Education Economics Review, Vol 9 (3),

November 1995.

Available online at

http://sosig.ac.uk/cticce/cheer/ch9_3/ch9_3.htm

[Giles and McRae 1995]

C. Giles and J. McRae,

"The IFS Microsimulation Tax and Benefit Model", IFS Working Paper W95/19,

1995.

[Gnuplot: Home Page]

Gnuplot home page,

http://www.cs.dartmouth.edu/gnuplot/gnuplot.html

[IFS: Home Page]

IFS home page, http://www.ifs.org.uk/

[IFS: How to lie]

IFS "ASSESSING THE IMPACT OF TAX CHANGES ... or how to lie about taxes" page,

http://www.ifs.org.uk/research/personal/howtolie.htm

[IFS: Story so far]

IFS "Story so far" page,

http://www.ifs.org.uk/byoc/storysofar.htm

[IFS: The Impact of the 1996 Budget]

IFS “Impact of the 1996 Budget” page,

http://www.ifs.org.uk/budget96/postbud/distrib96.htm

[IFS: Tow]

IFS "Introduction to Tow" page, http://www.ifs.org.uk/Tow/intro.htm

[Ireson-Paine 1996]

J. Ireson-Paine,

"Web-O-Matic: using System Limit Programming in a declarative

object-oriented language for building complex interactive Web applications",

Proceedings of the First Project David Workshop on Algebraic Document Processing and SGML,

(Departamento de Inform(tica, Universidade do Minho, Portugal, September 2-4 1996).

Online at http://users.ox.ac.uk/~popx/webomatic.html

[Ireson-Paine 1997a]

J. Ireson-Paine,

"Web-O-Matic/Rexx: A tool for writing interactive Web pages that

 works by compiling HTML into Object Rexx", Proceedings of 8th Rexx Symposium,

(Heidelberg, Germany, April 22-24 1997).

Online at http://users.ox.ac.uk/~popx/orexx.html

[Ireson-Paine 1997b]

J. Ireson-Paine,

"How to connect existing educational programs to the Web: a

 simple guide",

Computers in Higher Education Economics Review, Vol 11 (2),

September 1997.

Available online at

http://users.ox.ac.uk/~popx/cheer.html

and

http://sosig.ac.uk/cticce/cheer/ch11_2/ch11_2.htm

[Ireson-Paine: Home Page]

Jocelyn Ireson-Paine's home page, http://users.ox.ac.uk/~popx/

